CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Complexity is costly: A meta-analysis of parametric and non-parametric methods for short-term population forecasting
Authors
B Collen
EE Holmes
JT Thorson
EJ Ward
Publication date
25 February 2014
Publisher
Doi
Cite
Abstract
Short-term forecasts based on time series of counts or survey data are widely used in population biology to provide advice concerning the management, harvest and conservation of natural populations. A common approach to produce these forecasts uses time-series models, of different types, fit to time series of counts. Similar time-series models are used in many other disciplines, however relative to the data available in these other disciplines, population data are often unusually short and noisy and models that perform well for data from other disciplines may not be appropriate for population data. In order to study the performance of time-series forecasting models for natural animal population data, we assembled 2379 time series of vertebrate population indices from actual surveys. Our data were comprised of three vastly different types: highly variable (marine fish productivity), strongly cyclic (adult salmon counts), and small variance but long-memory (bird and mammal counts). We tested the predictive performance of 49 different forecasting models grouped into three broad classes: autoregressive time-series models, non-linear regression-type models and non-parametric time-series models. Low-dimensional parametric autoregressive models gave the most accurate forecasts across a wide range of taxa; the most accurate model was one that simply treated the most recent observation as the forecast. More complex parametric and non-parametric models performed worse, except when applied to highly cyclic species. Across taxa, certain life history characteristics were correlated with lower forecast error; specifically, we found that better forecasts were correlated with attributes of slow growing species: large maximum age and size for fishes and high trophic level for birds. © 2014 Nordic Society Oikos
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1111%2Fj.1600-0706...
Last time updated on 13/11/2020
UCL Discovery
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:eprints.ucl.ac.uk.OAI2:143...
Last time updated on 14/07/2014