Exogenous Melatonin Enhances Cold Resistance by Improving Antioxidant Defense and Cold-Responsive Genes’ Expression in Banana

Abstract

Accumulated evidence has revealed the mitigation effects of exogenous melatonin on cold stress in plants. In this study, to investigate the defensive roles of exogenous melatonin in banana under cold stress, we researched the influences of exogenous melatonin on the chlorophyll fluorescence parameters, antioxidant defense indexes and expression levels of cold-responsive genes in cold-stressed ‘Brazil’ banana seedlings. Results showed that 100 μM of exogenous melatonin achieved the best cold-resistance-promoting effect in banana. Exogenous melatonin treatment significantly increased the electron transfer rate, light harvesting efficiency, total antioxidant capacity, catalase and superoxidase activities and proline and soluble sugar contents and significantly reduced the accumulations of malondialdehyde, superoxide anion and hydrogen peroxide in the leaves of cold-stressed banana. In addition, under cold stress, melatonin significantly induced the expression of low-temperature-responsive genes, such as MaChiI1, MaCSD1C, MaWhy1, MaKIN10, MaADA1 and MaHOS1. It was concluded that the application of exogenous melatonin enhanced antioxidant defense and induced the expression of cold-responsive genes, thereby improving the cold resistance of banana. Our study will provide a basis for the application of exogenous melatonin in improving plant cold resistance

    Similar works