Growth of MoSe2 thin films and use in electrochemical hydrogen evolution

Abstract

We present the chemical vapor deposition (CVD) approach to grow MoSe2 thin films using colloidal molybdenum nanoparticles (Mo NPs). The synthetic protocol of Mo NPs was achieved using a wet-chemical method. The obtained Mo NPs were spin-coated on graphite substrates and heat-treated in the presence of selenium vapors at several temperatures (≥750 °C). The electrocatalytic activities of heat-treated MoSe2 thin films were studied for hydrogen evolution reaction (HER) in 0.5 M sulfuric acid (H2SO4). The lowest recorded overpotential of 218 mV at 10 mA cm−2 vs. a reversible hydrogen electrode was achieved with MoSe2−800°C catalyst. In addition, electrochemical impedance spectroscopy (EIS) was performed to access the chargetransfer resistance of the MoSe2 films. The colloidal approach combined with CVD is a promising route to produce carbon supported MoSe2 electrocatalyst for HER

    Similar works

    Full text

    thumbnail-image