Sztuczne sieci neuronowe (SSN) są uważane za jedno z najnowszych narzędzi, które są wykorzystywane do rozwiązywania skomplikowanych problemów, które nie mogą być rozwiązane za pomocą konwencjonalnych metod. W badaniach wykorzystano SSN jako narzędzia do symulacji i optymalizacji procesu produkcji brykietów. Proces ten składa się z trzech etapów: rozdrabniania wstępnego na sieczkarni toporowej, mielenia na młynie bijakowym i zagęszczania w brykieciarce tłokowej. Na podstawie przeprowadzonych symulacji opracowano zalecenia dotyczące optymalnych parametrów prowadzenia procesu produkcji brykietów z miskanta (teoretycznej długości sieczki, średnicy sita młyna i ciśnienia brykietowania). Stwierdzono, że najkorzystniejsze jest przyjęcie teoretycznej długości sieczki równej 10 mm i średnicy sita 15 mm. Zapewnia to minimalną energochłonność procesu produkcji brykietu. Parametry jakościowe brykietu (trwałość i gęstość) należy regulować wartością ciśnienia brykietowania.Artificial neural networks (ANN) are considered to be one of the newest tools that are used to solve complex problems that can not be solved by conventional methods. The study used an ANN as a tool to simulate and optimize the production of briquettes. This process consists of three stages: preliminary shredding process carried out using flywheel cutter, grinding in a beater wheel mill, and compacting in the briquetting piston machine. Based on simulations performed, we developed recommendations for the optimal production parameters of miscanthus briquette (theoretical chop length, diameter sieve mill and briquetting pressure). It was found that the best is to adopt a theoretical chop length equal to 10 mm and 15 mm diameter sieve. This ensures minimal energy consumption during production of briquettes. Quality parameters of briquette (durability and density) should be regulated by briquetting pressure value