Temperature distribution in a brake disc with variable contact pressure

Abstract

The aim of this study was to investigate the influence of the time of pressure increase during single braking on the temperature in a brake disc. The case of linear pressure increase from zero to nominal value in the initial stage of braking and maintaining this value to standstill was considered. The time distribution of the sliding velocity of frictional elements was determined from the differential equation of motion with the initial condition. Based on the time distributions of pressure and sliding velocity, the intensity of the frictional heat flux, which affects on the disc surface, was determined. Spatio-temporal distribution of the temperature in a brake disc was found from analytical solution of the heat conduction boundary–value problem for semi–space heated on the outer surface heat flux with known a priori intensity. The numerical analysis conducted allowed to determine engineering equation, which describes relation between maximum temperature and the time of pressure increase

    Similar works