Optical diagnostics in a spark ignition engine for two-wheel vehicles

Abstract

Different optical techniques were applied to describe the thermal and chemical processes that occur in a SI small engine from the ported fuel injection and in-cylinder mixture formation to the combustion process and the exhaust emission. In PFI SI engines, the atomized fuel is sprayed towards the intake valves, where it may evaporate, puddle or rebound. Furthermore, a portion of the fuel may flow directly into the cylinder or impinge upon the port walls. These phenomena occur in varying degrees and depend upon the engine design, injector location and engine operation. Potentially the fuel can enter the cylinder in a poorly atomized state, leading to an increased unburned hydrocarbon emissions. This is particularly true during cold operation, when evaporation is low. In the small-motorcycle and scooter engines the fuel injection occurs in smaller intake manifold than light-duty vehicle engines, increasing the criticism of the fuel-wall interaction. The experimental investigations were performed in a single cylinder engine constituted by an elongated optically accessible piston and equipped with the head and injection system of a reference 4-stroke engine for small vehicles. High spatial resolution imaging was used to characterize the fuel injection phase. The cycle resolved visualization was performed to follow the flame propagation from the intake spark ignition to the exhaust phase. Natural emission spectroscopy measurements were applied in the ultraviolet-visible wavelength range to identify the chemical species that are markers of the combustion process and to follow the formation of pollutants

    Similar works