CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Personalised management of women with cervical abnormalities using a clinical decision support scoring system
Authors
M. Kyrgiou Pouliakis, A. Panayiotides, J.G. Margari, N. Bountris, P. Valasoulis, G. Paraskevaidi, M. Bilirakis, E. Nasioutziki, M. Loufopoulos, A. Haritou, M. Koutsouris, D.D. Karakitsos, P. Paraskevaidis, E.
Publication date
1 January 2016
Publisher
Abstract
Objectives To develop a clinical decision support scoring system (DSSS) based on artificial neural networks (ANN) for personalised management of women with cervical abnormalities. Methods We recruited women with cervical abnormalities and healthy controls that attended for opportunistic screening between 2006 and 2014 in 3 University Hospitals. We prospectively collected detailed patient characteristics, the colposcopic impression and performed a series of biomarkers using a liquid-based cytology sample. These included HPV DNA typing, E6&E7 mRNA by NASBA or flow cytometry and p16INK4a immunostaining. We used ANNs to combine the cytology and biomarker results and develop a clinical DSSS with the aim to improve the diagnostic accuracy of tests and quantify the individual's risk for different histological diagnoses. We used histology as the gold standard. Results We analysed data from 2267 women that had complete or partial dataset of clinical and molecular data during their initial or followup visits (N = 3565). Accuracy parameters (sensitivity, specificity, positive and negative predictive values) were assessed for the cytological result and/or HPV status and for the DSSS. The ANN predicted with higher accuracy the chances of high-grade (CIN2 +), low grade (HPV/CIN1) and normal histology than cytology with or without HPV test. The sensitivity for prediction of CIN2 or worse was 93.0%, specificity 99.2% with high positive (93.3%) and negative (99.2%) predictive values. Conclusions The DSSS based on an ANN of multilayer perceptron (MLP) type, can predict with the highest accuracy the histological diagnosis in women with abnormalities at cytology when compared with the use of tests alone. A user-friendly software based on this technology could be used to guide clinician decision making towards a more personalised care. © 2016 Elsevier Inc
Similar works
Full text
Available Versions
Pergamos : Unified Institutional Repository / Digital Library Platform of the National and Kapodistrian University of Athens
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:lib.uoa.gr:uoadl:3101218
Last time updated on 10/02/2023