CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Self-similar evolution in nonlocal nonlinear media
Authors
T.P. Horikis Frantzeskakis, D.J. Antar, N. Bakirtaş, I. Smyth, N.F.
Publication date
1 January 2019
Publisher
Abstract
The self-similar propagation of optical beams in a broad class of nonlocal, nonlinear optical media is studied utilizing a generic system of coupled equations with linear gain. This system describes, for instance, beam propagation in nematic liquid crystals and optical thermal media. It is found, both numerically and analytically, that the nonlocal response has a focusing effect on the beam, concentrating its power around its center during propagation. In particular, the beam narrows in width and grows in amplitude faster than in local media, with the resulting beam shape being parabolic. Finally, a general initial localized beam evolves to a common shape. © 2019 Optical Society of America
Similar works
Full text
Available Versions
Pergamos : Unified Institutional Repository / Digital Library Platform of the National and Kapodistrian University of Athens
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:lib.uoa.gr:uoadl:3071975
Last time updated on 10/02/2023