State-of-the-art machine learning algorithms for the prediction of outcomes after contemporary heart transplantation: Results from the UNOS database

Abstract

Purpose We sought to develop and validate machine learning (ML) models to increase the predictive accuracy of mortality after heart transplantation (HT). Methods and results We included adult HT recipients from the United Network for Organ Sharing (UNOS) database between 2010 and 2018 using solely pre-transplant variables. The study cohort comprised 18 625 patients (53 +/- 13 years, 73% males) and was randomly split into a derivation and a validation cohort with a 3:1 ratio. At 1-year after HT, there were 2334 (12.5%) deaths. Out of a total of 134 pre-transplant variables, 39 were selected as highly predictive of 1-year mortality via feature selection algorithm and were used to train five ML models. AUC for the prediction of 1-year survival was .689, .642, .649, .637, .526 for the Adaboost, Logistic Regression, Decision Tree, Support Vector Machine, and K-nearest neighbor models, respectively, whereas the Index for Mortality Prediction after Cardiac Transplantation (IMPACT) score had an AUC of .569. Local interpretable model-agnostic explanations (LIME) analysis was used in the best performing model to identify the relative impact of key predictors. ML models for 3- and 5-year survival as well as acute rejection were also developed in a secondary analysis and yielded AUCs of .629, .609, and .610 using 27, 31, and 91 selected variables respectively. Conclusion Machine learning models showed good predictive accuracy of outcomes after heart transplantation

    Similar works