CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
A cumulant based algorithm for the identification of input-output quadratic systems
Authors
P. Koukoulas Tsoulkas, V. Kalouptsidis, N.
Publication date
1 January 2002
Publisher
Abstract
The identification of a special class of polynomial models is pursued in this paper. In particular a parameter estimation algorithm is developed for the identification of an input-output quadratic model excited by a zero mean white Gaussian input and with the output corrupted by additive measurement noise. Input-output crosscumulants up to the fifth order are employed and the identification problem of the unknown model parameters is reduced to the solution of successive triangular linear systems of equations that are solved at each step of the algorithm. Simulation studies are carried out and the proposed methodology is compared with two least squares type identification algorithms, the output error method and a combination of the instrumental variables and the output error approach. The proposed cumulant based algorithm and the output error method are tested with real data produced by a robotic manipulator. © 2002 Elsevier Science Ltd. All rights reserved
Similar works
Full text
Available Versions
Pergamos : Unified Institutional Repository / Digital Library Platform of the National and Kapodistrian University of Athens
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:lib.uoa.gr:uoadl:3037793
Last time updated on 10/02/2023