CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
7-Bromoindirubin-3′-oxime induces caspase-independent cell death
Authors
J. Ribas Bettayeb, K. Ferandin, Y. Knockaert, M. Garrofé-Ochoa, X. Totzke, F. Schächtele, C. Mester, J. Polychronopoulos, P. Magiatis, P. Skaltsounis, A.-L. Boix, J. Meijer, L.
Publication date
1 January 2006
Publisher
Abstract
Indirubin, an isomer of indigo, is a reported inhibitor of cyclin-dependent kinases (CDKs) and glycogen synthase kinase-3 (GSK-3) as well as an agonist of the aryl hydrocarbon receptor (AhR). Indirubin is the active ingredient of a traditional Chinese medicinal recipe used against chronic myelocytic leukemia. Numerous indirubin analogs have been synthesized to optimize this promising kinase inhibitor scaffold. We report here on the cellular effects of 7-bromoindirubin-3′-oxime (7BIO). In contrast to its 5-bromo- and 6-bromo- isomers, and to indirubin-3′-oxime, 7BIO has only a marginal inhibitory activity towards CDKs and GSK-3. Unexpectedly, 7BIO triggers a rapid cell death process distinct from apoptosis. 7-Bromoindirubin-3′-oxime induces the appearance of large pycnotic nuclei, without classical features of apoptosis such as chromatin condensation and nuclear fragmentation. 7-Bromoindirubin- 3′-oxime-induced cell death is not accompanied by cytochrome c release neither by any measurable effector caspase activation. Furthermore, the death process is not altered either by the presence of Q-VD-OPh, a broad-spectrum caspase inhibitor, or the overexpression of Bcl-2 and Bcl-XL proteins. Neither AhR nor p53 is required during 7BIO-induced cell death. Thus, in contrast to previously described indirubins, 7BIO triggers the activation of non-apoptotic cell death, possibly through necroptosis or autophagy. Although their molecular targets remain to be identified, 7-substituted indirubins may constitute a new class of potential antitumor compounds that would retain their activity in cells refractory to apoptosis. © 2006 Nature Publishing Group. All rights reserved
Similar works
Full text
Available Versions
Pergamos : Unified Institutional Repository / Digital Library Platform of the National and Kapodistrian University of Athens
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:lib.uoa.gr:uoadl:3094613
Last time updated on 10/02/2023