CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Improved algorithms for computing determinants and resultants
Authors
I.Z. Emiris Pan, V.Y.
Publication date
1 January 2005
Publisher
Abstract
Our first contribution is a substantial acceleration of randomized computation of scalar, univariate, and multivariate matrix determinants, in terms of the output-sensitive bit operation complexity bounds, including computation modulo a product of random primes from a fixed range. This acceleration is dramatic in a critical application, namely solving polynomial systems and related studies, via computing the resultant. This is achieved by combining our techniques with the primitive-element method, which leads to an effective implicit representation of the roots. We systematically examine quotient formulae of Sylvester-type resultant matrices, including matrix polynomials and the u-resultant. We reduce the known bit operation complexity bounds by almost an order of magnitude, in terms of the resultant matrix dimension. Our theoretical and practical improvements cover the highly important cases of sparse and degenerate systems. © 2004 Elsevier Inc. All rights reserved
Similar works
Full text
Available Versions
Pergamos : Unified Institutional Repository / Digital Library Platform of the National and Kapodistrian University of Athens
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:lib.uoa.gr:uoadl:3065432
Last time updated on 10/02/2023