In recent days, cardiac vascular disease has been one of the deadliest health-affecting factors causing sudden death. So, the importance of early risk prediction through feature analysis has become a big problem in data analysis because more nonlinear time series data increase the feature dimension. Irrelevant feature dimension scaling affects the prediction accuracy and leads to classification inaccuracy. To resolve this problem, we propose an Enhanced Healthcare data analysis model for cardiac data prediction using an adaptive Deep Featured Adaptive Convolution Neural Network for early risk identification. Initially, the preprocessing was augmented to formalize the time series data collected from the CVD-DS dataset. Then the feature evaluation was carried out with the Relative Subset Clustering (RSC) approach. The Cardiac Deficiency Prediction rate (CDPr) was estimated to identify the relational feature to subset margins. Based on the CDPr weight the feature is extracted using Cross-Over Mutual Scaling Feature Selection Model (CMSFS). The selected features get with a deep neural classifier based on logical neurons. They are then constructed into a Dense Net Convolution Neural Network (DN-CNN) classifier to feed forward the feature values and predict the Disease Affection Rate (DAR) by class category. The proposed system produces high prediction accuracy in classification, precision, and recall rate to support premature treatment for early cardiac disease risk prediction.