Configuration-based compliance control of kinematically redundant robot arm Part I: Theoretical framework

Abstract

Kada je popustljivost vrha robota dominantno određena popustljivošću njegovih zglobova, generalizovana matrica krutosti robota može se preslikati iz prostora radnog zadatka u prostor unutrašnjih koordinata robota primenom kongruentne transformacije. Generisana na ovaj način, matrica krutosti u unutrašnjim koordinatama je u opštem slučaju nedijagonalna. Nedijagonalni elementi se mogu generisati samo redundantnom aktuacijom (poliartikulacioni aktuatori). Mada je ova vrsta aktuatora široko rasprostranjena kod bioloških sistema, njena praktična primena kod robota i sličnih veštačkih sistema je ekstremno problematična. Da bi se prevazišao ovaj problem, predlaže se rešenje bazirano na kinematskoj redundansi. U okviru ovog rada koji se sastoji iz dva dela, prikazuje se novi pristup upravljanja popustljivošću vrha robota, odnosno elastomehaničkom interakcijom vrha robota i njegovog okruženja, primenom kinematske redundanse umesto aktuacione. U prvom delu ovaj pristup je prikazan kroz koncipiranje metode upravljanja krutošću promenom konfiguracije (CSC) za slučaj kinetosatičke konzistentnosti, primenom projekcije gradijenta optimizacione funkcije koja minimizira Euklidovu normu nedijagonalnih elemenata matrice krutosti robota izražene u unutrašnjim koordinatama.When the robot endpoint compliance is dominantly influenced by the flexibility of its joints, the robot taskspace generalized stiffness matrix can be mapped onto jointspace using appropriate congruence transformation. Thus produced, the jointspace stiffness matrix is generally nondiagonal. Off-diagonal elements can be generated by redundant actuation only (polyarticular actuators). Although this kind of actuation is widely present in biological systems, its practical implementation in engineering systems is very difficult. To overcome this problem, use of kinematic redundancy is proposed. This two-part paper presents an approach to the control of robot endpoint compliance, i.e., elasto-mechanical interaction between a robot and its environment using kinematic redundancy instead of actuation redundancy. In Part I this approach is developed by proposing the Configuration-based Stiffness Control (CSC) method for kinetostatically consistent control of robot compliant behaviour, based on the gradient projection of the cost function which minimizes the norm of off-diagonal elements of the jointspace matrix

    Similar works