Manipulating droplet jumping behaviors on hot substrates with surface topography by controlling vapor bubble growth: from vibration to explosion

Abstract

A major challenge in surface science is rapid removal of sessile liquid droplets from a substrate with complex three-dimensional structures. However, our understanding of interfacial phenomena including droplet wetting dynamics and phase changes on engineered surfaces remains elusive, impeding dexterous designs for agile droplet purging. Here we present a surface topography strategy to modulate droplet jumping behaviors on micropillared substrates at moderate superheat of 20-30 {\deg}C. Specifically, sessile droplets usually dwell in the Wenzel state and therefore the micropillar matrix functions as fin array for heat transfer enhancement. By tuning the feature sizes of micropillars, one can adjust the vapor bubble growth at the droplet base from the heat-transfer-controlled mode to the inertia-controlled mode. As opposed to the relatively slow vibration jumping in seconds, the vapor bubble growth in the inertia-controlled mode on tall-micropillared surface leads to droplet out-of-plane jumping in milliseconds. Such rapid droplet detachment stems from the swift Wenzel-to Cassie transition incurred by vapor bubble burst (explosion), during which the bubble expanding velocity can reach as fast as ~4 m/s. Vapor bubble growth in a droplet and bubble-burst-induced droplet jumping have been less explored. This study unveils the underpinning mechanisms of versatile jumping behaviors of boiling droplets from a hot micro-structured surface and opens up further possibilities for the design of engineered surfaces that mitigate potential damage of vapor explosion or alleviate condensate flooding

    Similar works

    Full text

    thumbnail-image

    Available Versions