Abstract

We present a catalog of about 25,000 images of massive (M109MM_{\star} \ge 10^9 M_{\odot}) galaxies at redshift 3z63 \leq z \leq 6 from the TNG50 cosmological simulation, tailored for observations at multiple wavelengths carried out with JWST. The synthetic images were created with the SKIRT radiative transfer code, including the effects of dust attenuation and scattering. The noiseless images were processed with the mirage simulator to mimic the Near Infrared Camera (NIRCam) observational strategy (e.g., noise, dithering pattern, etc.) of the Cosmic Evolution Early Release Science (CEERS) survey. In this paper, we analyze the predictions of the TNG50 simulation for the size evolution of galaxies at 3z63 \leq z \leq 6 and the expectations for CEERS to probe that evolution. In particular, we investigate how sizes depend on wavelength, redshift, mass, and angular resolution of the images. We find that the effective radius accurately describes the three-dimensional half-mass radius of TNG50 galaxies. Sizes observed at 2~μ\mum are consistent with those measured at 3.56~μ\mum at all redshifts and masses. At all masses, the population of higher-zz galaxies is more compact than their lower-zz counterparts. However, the intrinsic sizes are smaller than the mock observed sizes for the most massive galaxies, especially at z4z \lesssim 4. This discrepancy between the mass and light distribution may point to a transition in the galaxy morphology at zz=4-5, where massive compact systems start to develop more extended stellar structures.Comment: Accepted for publication in ApJ (20 pages, 12 figures). Data publicly released at https://www.tng-project.org/costantin22 and at https://www.lucacostantin.com/OMEG

    Similar works

    Full text

    thumbnail-image

    Available Versions