Figure S1 from Photoperiod-driven concurrent changes in hypothalamic and brainstem transcription of sleep and immune genes in migratory redheaded bunting

Abstract

The molecular regulation of sleep in avian migrants is still obscure. We thus investigated this in migratory redheaded buntings, where four life-history states (LHS; i.e. non-migratory, pre-migratory, migratory and refractory state) were induced. There was increased night-time activity (i.e. Zugunruhe) during the migratory state with reduced day-time activity. The recordings of the sleep–wake cycle in buntings showed increased night-time active wakefulness coupled with drastically reduced front and back sleep during migratory phase. Interestingly, we found the buntings to feed and drink even after lights-off during migration. Gene expression studies revealed increased hypothalamic expression of glucocorticoid receptor (nr3c1), and pro-inflammatory cytokines (il1b and il6) in pre-migratory and migratory states, respectively, whereas in brainstem Ca2+/calmodulin-dependent protein kinase 2 (camk2) was upregulated during the migratory state. This suggested a heightened pro-inflammatory state during migration which is a feature of chronic sleep loss, and a possible role of Ca2+ signalling in promoting wakefulness. In both the hypothalamus and brainstem, the expression of melatonin receptors (mel1a and mel1b) was increased in the pre-migratory state, and growth hormone-releasing hormone (ghrh, known to induce sleep) was reduced during the migratory state. The current results demonstrate key molecules involved in the regulation of sleep–wake cycle across LHS in migratory songbirds

    Similar works

    Full text

    thumbnail-image

    Available Versions