Hypersweeps, Convective Clouds and Reeb Spaces

Abstract

Isosurfaces are one of the most prominent tools in scientific data visualisation. An isosurface is a surface that defines the boundary of a feature of interest in space for a given threshold. This is integral in analysing data from the physical sciences which observe and simulate three or four dimensional phenomena. However it is time consuming and impractical to discover surfaces of interest by manually selecting different thresholds. The systematic way to discover significant isosurfaces in data is with a topological data structure called the contour tree. The contour tree encodes the connectivity and shape of each isosurface at all possible thresholds. The first part of this work has been devoted to developing algorithms that use the contour tree to discover significant features in data using high performance computing systems. Those algorithms provided a clear speedup over previous methods and were used to visualise physical plasma simulations. A major limitation of isosurfaces and contour trees is that they are only applicable when a single property is associated with data points. However scientific data sets often take multiple properties into account. A recent breakthrough generalised isosurfaces to fiber surfaces. Fiber surfaces define the boundary of a feature where the threshold is defined in terms of multiple parameters, instead of just one. In this work we used fiber surfaces together with isosurfaces and the contour tree to create a novel application that helps atmosphere scientists visualise convective cloud formation. Using this application, they were able to, for the first time, visualise the physical properties of certain structures that trigger cloud formation. Contour trees can also be generalised to handle multiple parameters. The natural extension of the contour tree is called the Reeb space and it comes from the pure mathematical field of fiber topology. The Reeb space is not yet fully understood mathematically and algorithms for computing it have significant practical limitations. A key difficulty is that while the contour tree is a traditional one dimensional data structure made up of points and lines between them, the Reeb space is far more complex. The Reeb space is made up of two dimensional sheets, attached to each other in intricate ways. The last part of this work focuses on understanding the structure of Reeb spaces and the rules that are followed when sheets are combined. This theory builds towards developing robust combinatorial algorithms to compute and use Reeb spaces for practical data analysis

    Similar works