Forecasting of Mean Daily Runoff Discharge of Behesht-Abad River Using Wavelet Analysis

Abstract

Forecasting of river discharge is a key aspect of efficient water resources planning and management. In this study, two models based on Wavelet Analysis and Artificial Neural networks (ANNs) were developed for forecasting discharge of Behesht-Abad River. For this purpose, mean daily discharge data of mentioned river as well as precipitation data of 17 meteorological stations were used in the period 1999-2008. In the first method, called Cross Wavelet (CW), complex Morlet wavelet was used as analyzer function. Wavelet analyzing was performed for every daily rainfall and average discharge time series, separately. Initial phase, phase differences of subseries obtained from wavelet analysis, and calibration coefficients were calculated. Then structural series were reconstructed and average of structural components calculated. The river discharges were predicted for 1, 2, 3 and 7 days ahead forecasting horizon. In the second method, called Wavelet Neural Networks conjunction (WNN), a preprocessing was done on the initial input matrix using Meyer wavelet. Then the elements of the initial input matrix were normalized and the second input matrix was created. A three layer Feed Forward Back Propagation (FFBP) was formed based on the second input matrix and target matrix. After training the model using Levenberg–Marquardt (LM) algorithm, the river discharges were predicted for short term time horizons. The results showed that the WNN method had higher accuracy in short-term forecasting of river discharge in comparison with CW and ANN methods

    Similar works

    Full text

    thumbnail-image