Machine learning for quantum and complex systems

Abstract

Machine learning now plays a pivotal role in our society, providing solutions to problems that were previously thought intractable. The meteoric rise of this technology can no doubt be attributed to the information age that we now live in. As data is continually amassed, more efficient and scalable methods are required to yield functional models and accurate inferences. Simultaneously we have also seen quantum technology come to the forefront of research and next generation systems. These technologies promise secure information transfer, efficient computation and high precision sensing, at levels unattainable by their classical counterparts. Although these technologies are powerful, they are necessarily more complicated and difficult to control. The combination of these two advances yields an opportunity for study, namely leveraging the power of machine learning to control and optimise quantum (and more generally complex) systems. The work presented in thesis explores these avenues of investigation and demonstrates the potential success of machine learning methods in the domain of quantum and complex systems. One of the most crucial potential quantum technologies is the quantum memory. If we are to one day harness the true power of quantum key distribution for secure transimission of information, and more general quantum computating tasks, it will almost certainly involve the use of quantum memorys. We start by presenting the operation of the cold atom workhorse: the magneto-optical trap (MOT). To use a cold atomic ensemble as a quantum memory we are required to prepare the atoms using a specialised cooling sequence. During this we observe a stable, coherent optical emission exiting each end of the elongated ensemble. We characterise this behaviour and compare it to similar observations in previous work. Following this, we use the ensemble to implement a backward Raman memory. Using this scheme we are able to demonstrate an increased efficiency over that of previous forward recall implementations. While we are limited by the optical depth of the system, we observe an efficiency more than double that of previous implementations. The MOT provides an easily accessible test bed for the optimisation via some machine learning technique. As we require an efficient search method, we implement a new type of algorithm based on deep learning. We design this technique such that the artificial neural networks are placed in control of the online optimisation, rather than simply being used as surrogate models. We experimentally optimise the optical depth of the MOT using this method, by parametrising the time varying compression sequence. We identify a new and unintuitive method for cooling the atomic ensemble which surpasses current methods. Following this initial implementation we make substantial improvements to the deep learning approach. This extends the approach to be applicable to a far wider range of complex problems, which may contain extensive local minima and structure. We benchmark this algorithm against many of the conventional optimisation techniques and demonstrate superior capability to optimise problems with high dimensionality. Finally we apply this technique to a series of preliminary problems, namely the tuning of a single electron transistor and second-order correlations from a quantum dot source

    Similar works