Cooling concepts for the CVD diamond Brewster-angle window

Abstract

The chemical vapor deposition (CVD) diamond Brewster-angle window is a very promising broadband radio-frequency (RF) output window solution for frequency step-tunable high power gyrotrons foreseen in nuclear fusion devices like DEMO. Since gyrotrons operate in the megawatt-class power range, active cooling of the output window during operation is mandatory for long pulse operation. In this paper, different indirect cooling layouts were investigated and compared by finite element method (FEM) thermal and structural analyses. Scenarios with different power and frequency beam were taken into account in the analyses

    Similar works