Carbon Segregation in CoCrFeMnNi High‐Entropy Alloy Driven by High‐Pressure Torsion at Room and Cryogenic Temperatures

Abstract

Herein, a CoCrFeMnNi high-entropy alloy with reduced Cr content and with the addition of 2 at% C interstitial is processed via high-pressure torsion (HPT) under 6.5 GPa by three turns at room and cryogenic temperatures. The microstructure is investigated by transmission electron microscopy (TEM) and atom probe tomography (APT). The results indicate that C atoms segregate at the boundaries of the nanograins in the sample processed at room temperature, while the sample processed at cryogenic temperature does not show any notable segregations of carbon

    Similar works