Abstract

Supporting Information: dad212185-sup-0001-Appendix.docx (369.8 KB) available online at https://alz-journals.onlinelibrary.wiley.com/doi/10.1002/dad2.12185#support-information-sectionCopyright © 2021 The Authors. Introduction: We aimed to assess episodic memory in genetic frontotemporal dementia (FTD) with the Free and Cued Selective Reminding Test (FCSRT). Methods: The FCSRT was administered in 417 presymptomatic and symptomatic mutation carriers (181 chromosome 9 open reading frame 72 [C9orf72], 163 progranulin [GRN], and 73 microtubule-associated protein tau [MAPT]) and 290 controls. Group differences and correlations with other neuropsychological tests were examined. We performed voxel-based morphometry to investigate the underlying neural substrates of the FCSRT. Results: All symptomatic mutation carrier groups and presymptomatic MAPT mutation carriers performed significantly worse on all FCSRT scores compared to controls. In the presymptomatic C9orf72 group, deficits were found on all scores except for the delayed total recall task, while no deficits were found in presymptomatic GRN mutation carriers. Performance on the FCSRT correlated with executive function, particularly in C9orf72 mutation carriers, but also with memory and naming tasks in the MAPT group. FCSRT performance also correlated with gray matter volumes of frontal, temporal, and subcortical regions in C9orf72 and GRN, but mainly temporal areas in MAPT mutation carriers. Discussion: The FCSRT detects presymptomatic deficits in C9orf72- and MAPT-associated FTD and provides important insight into the underlying cause of memory impairment in different forms of FTD.The Dementia Research Centre is supported by Alzheimer's Research UK, Alzheimer's Society, Brain Research UK, and The Wolfson Foundation. This work was supported by the NIHR UCL/H Biomedical Research Centre, the Leonard Wolfson Experimental Neurology Centre (LWENC) Clinical Research Facility, and the UK Dementia Research Institute, which receives its funding from UK DRI Ltd, funded by the UK Medical Research Council, Alzheimer's Society, and Alzheimer's Research UK. J. D. Rohrer is supported by an MRC Clinician Scientist Fellowship (MR/M008525/1) and has received funding from the NIHR Rare Disease Translational Research Collaboration (BRC149/NS/MH). This work was also supported by the MRC UK GENFI grant (MR/M023664/1); the Bluefield Project; the JPND GENFI-PROX grant (2019-02248); the Dioraphte Foundation (grant numbers 09-02-00); the Association for Frontotemporal Dementias Research Grant 2009; The Netherlands Organization for Scientific Research (NWO; grant HCMI 056-13-018); ZonMw Memorabel (Deltaplan Dementie, project numbers 733 050 103 and 733 050 813); JPND PreFrontAls consortium (project number 733051042). J. M. Poos is supported by a Fellowship award from Alzheimer Nederland (WE.15-2019.02). This work was conducted using the MRC Dementias Platform UK (MR/L023784/1 and MR/009076/1). Several authors of this publication are members of the European Reference Network for Rare Neurological Diseases - Project ID No 739510

    Similar works