HDSDF: Hybrid Directional and Signed Distance Functions for Fast Inverse Rendering

Abstract

Implicit neural representations of 3D shapes form strong priors that areuseful for various applications, such as single and multiple view 3Dreconstruction. A downside of existing neural representations is that theyrequire multiple network evaluations for rendering, which leads to highcomputational costs. This limitation forms a bottleneck particularly in thecontext of inverse problems, such as image-based 3D reconstruction. To addressthis issue, in this paper (i) we propose a novel hybrid 3D objectrepresentation based on a signed distance function (SDF) that we augment with adirectional distance function (DDF), so that we can predict distances to theobject surface from any point on a sphere enclosing the object. Moreover, (ii)using the proposed hybrid representation we address the multi-view consistencyproblem common in existing DDF representations. We evaluate our novel hybridrepresentation on the task of single-view depth reconstruction and show thatour method is several times faster compared to competing methods, while at thesame time achieving better reconstruction accuracy.<br

    Similar works