Laser-induced terahertz spin transport (TST) and ultrafast demagnetization (UDM) are central but so far disconnected phenomena in femtomagnetism and terahertz spintronics. Here, we show that UDM and TST are driven by the same force: a generalized spin voltage, which is induced by the incident femtosecond laser pulse. Using broadband terahertz emission spectroscopy, we find that the rate of UDM of a single ferromagnetic film F has the same time evolution as the flux of TST from F into an adjacent normal-metal layer N. An analytical model consistently and quantitatively explains our observations. It reveals that both UDM in F and TST in the F|N stack arise from a generalized spin voltage Δμs, which is defined for arbitrary, nonthermal electron distributions. Our findings open up unexpected synergies and new pathways toward large-amplitude terahertz spin currents and, thus, energy-efficient ultrafast spintronic devices