One-Step Urothermal Synthesis of Li<sup>+</sup>‑Intercalated SnS<sub>2</sub> Anodes with High Initial Coulombic Efficiency for Li-Ion Batteries

Abstract

Tin sulfide, as a promising anode material for Li-ion batteries, suffers from high-capacity loss during cycling and low initial Coulombic efficiency, which limits its further application. In order to solve these problems, Li+-intercalated SnS2 with expanded interlayer spacing (0.89 nm) was prepared by the one-step urothermal method. The successful synthesis of Li+-intercalated SnS2 is confirmed by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, inductively coupled plasma emission spectrometer test, and exfoliation experiment. Compared with pure SnS2, the Li+-intercalated SnS2 electrode displays a higher initial Coulombic efficiency (79.3%) than the pure SnS2 electrode (55%). Also, Li+-intercalated SnS2 exhibits more excellent rate performance (548.4 mAh g–1 at 2 A g–1 and 216.6 mAh g–1 at 10 A g–1) and cycling performance (647.7 mAh g–1 at 0.1 A g–1 after 100 cycles)

    Similar works

    Full text

    thumbnail-image

    Available Versions