CCFL: Computationally Customized Federated Learning

Abstract

Federated learning (FL) is a method to train model with distributed data from numerous participants such as IoT devices. It inherently assumes a uniform capacity among participants. However, participants have diverse computational resources in practice due to different conditions such as different energy budgets or executing parallel unrelated tasks. It is necessary to reduce the computation overhead for participants with inefficient computational resources, otherwise they would be unable to finish the full training process. To address the computation heterogeneity, in this paper we propose a strategy for estimating local models without computationally intensive iterations. Based on it, we propose Computationally Customized Federated Learning (CCFL), which allows each participant to determine whether to perform conventional local training or model estimation in each round based on its current computational resources. Both theoretical analysis and exhaustive experiments indicate that CCFL has the same convergence rate as FedAvg without resource constraints. Furthermore, CCFL can be viewed of a computation-efficient extension of FedAvg that retains model performance while considerably reducing computation overhead

    Similar works

    Full text

    thumbnail-image

    Available Versions