Matter-antimatter asymmetry restrains the dimensionality of neural representations: quantum decryption of large-scale neural coding

Abstract

Projections from the study of the human universe onto the study of the self-organizing brain are herein leveraged to address certain concerns raised in latest neuroscience research, namely (i) the extent to which neural codes are multidimensional; (ii) the functional role of neural dark matter; (iii) the challenge to traditional model frameworks posed by the needs for accurate interpretation of large-scale neural recordings linking brain and behavior. On the grounds of (hyper-)self-duality under (hyper-)mirror supersymmetry, inter-relativistic quantum principles are introduced, whose consolidation, as spin-geometrical pillars of a network- and game-theoretical construction, is conducive to (i) the high-precision reproduction and reinterpretation of core experimental observations on neural coding in the self-organizing brain, with the instantaneous geometric dimensionality of neural representations of a spontaneous behavioral state being proven to be at most 16, unidirectionally; (ii) a possible role for spinor (co-)representations, as the latent building blocks of self-organizing cortical circuits subserving (co-)behavioral states; (iii) an early crystallization of pertinent multidimensional synaptic (co-)architectures, whereby Lorentz (co-)partitions are in principle verifiable; and, ultimately, (iv) potentially inverse insights into matter-antimatter asymmetry. New avenues for the decryption of large-scale neural coding in health and disease are being discussed.Comment: 33 pages;3 figures;1 table;minor edit

    Similar works

    Full text

    thumbnail-image

    Available Versions