Global Weinstein Type Theorem on Multiple Rotating Periodic Solutions for Hamiltonian Systems

Abstract

This paper concerns the existence of multiple rotating periodic solutions for 2n2n dimensional convex Hamiltonian systems. For the symplectic orthogonal matrix QQ, the rotating periodic solution has the form of z(t+T)=Qz(t)z(t+T)=Qz(t), which might be periodic, anti-periodic, subharmonic or quasi-periodic according to the structure of QQ. It is proved that there exist at least nn geometrically distinct rotating periodic solutions on a given convex energy surface under a pinched condition, so our result corresponds to the well known Ekeland and Lasry's theorem on periodic solutions. It seems that this is the first attempt to solve the symmetric quasi-periodic problem on the global energy surface. In order to prove the result, we introduce a new index on rotating periodic orbits.Comment: arXiv admin note: text overlap with arXiv:1812.0583

    Similar works

    Full text

    thumbnail-image

    Available Versions