Coherent spin dynamics of rare-earth doped crystals in the high-cooperativity regime

Abstract

Rare-earth doped crystals have long coherence times and the potential to provide quantum interfaces between microwave and optical photons. Such applications benefit from a high cooperativity between the spin ensemble and a microwave cavity -- this motivates an increase in the rare earth ion concentration which in turn impacts the spin coherence lifetime. We measure spin dynamics of two rare-earth spin species, 145^{145}Nd and Yb doped into Y2_{2}SiO5_{5}, coupled to a planar microwave resonator in the high cooperativity regime, in the temperature range 1.2 K to 14 mK. We identify relevant decoherence mechanisms including instantaneous diffusion arising from resonant spins and temperature-dependent spectral diffusion from impurity electron and nuclear spins in the environment. We explore two methods to mitigate the effects of spectral diffusion in the Yb system in the low-temperature limit, first, using magnetic fields of up to 1 T to suppress impurity spin dynamics and, second, using transitions with low effective g-factors to reduce sensitivity to such dynamics. Finally, we demonstrate how the `clock transition' present in the 171^{171}Yb system at zero field can be used to increase coherence times up to T2=6(1)T_{2} = 6(1) ms.Comment: 8 pages, 5 figure

    Similar works