Spatio-spectral decomposition of complex eigenmodes in subwavelength nanostructures through transmission matrix analysis

Abstract

Exploiting multiple near-field optical eigenmodes is an effective means of designing, engineering, and extending the functionalities of optical devices. However, the near-field optical eigenmodes of subwavelength plasmonic nanostructures are often highly multiplexed in both spectral and spatial distributions, making it extremely difficult to extract individual eigenmodes. We propose a novel mode analysis method that can resolve individual eigenmodes of subwavelength nanostructures, which are superimposed in conventional methods. A transmission matrix is constructed for each excitation wavelength by obtaining the near-field distributions for various incident angles, and through singular value decomposition, near-field profiles and energy spectra of individual eigenmodes are effectively resolved. By applying transmission matrix analysis to conventional electromagnetic simulations, we clearly resolved a set of orthogonal eigenmodes of single- and double-slot nanoantennas with a slot width of 20 nm. In addition, transmission matrix analysis leads to solutions that can selectively excite specific eigenmodes of nanostructures, allowing selective use of individual eigenmodes.11Nsciescopu

    Similar works

    Full text

    thumbnail-image

    Available Versions