MC-UNet: Martian Crater Segmentation at Semantic and Instance Levels Using U-Net-Based Convolutional Neural Network

Abstract

Crater recognition on Mars is of paramount importance for many space science applications, such as accurate planetary surface age dating and geological mapping. Such recognition is achieved by means of various image-processing techniques employing traditional CNNs (convolutional neural networks), which typically suffer from slow convergence and relatively low accuracy. In this paper, we propose a novel CNN, referred to as MC-UNet (Martian Crater U-Net), wherein classical U-Net is employed as the backbone for accurate identification of Martian craters at semantic and instance levels from thermal-emission-imaging-system (THEMIS) daytime infrared images. Compared with classical U-Net, the depth of the layers of MC-UNet is expanded to six, while the maximum number of channels is decreased to one-fourth, thereby making the proposed CNN-based architecture computationally efficient while maintaining a high recognition rate of impact craters on Mars. For enhancing the operation of MC-UNet, we adopt average pooling and embed channel attention into the skip-connection process between the encoder and decoder layers at the same network depth so that large-sized Martian craters can be more accurately recognized. The proposed MC-UNet is adequately trained using 2∼32 km radii Martian craters from THEMIS daytime infrared annotated images. For the predicted Martian crater rim pixels, template matching is subsequently used to recognize Martian craters at the instance level. The experimental results indicate that MC-UNet has the potential to recognize Martian craters with a maximum radius of 31.28 km (136 pixels) with a recall of 0.7916 and F1-score of 0.8355. The promising performance shows that the proposed MC-UNet is on par with or even better than other classical CNN architectures, such as U-Net and Crater U-Net

    Similar works

    Full text

    thumbnail-image