You Are What You Eat: A Preference-Aware Inverse Optimization Approach

Abstract

A key challenge in the emerging field of precision nutrition entails providing diet recommendations that reflect both the (often unknown) dietary preferences of different patient groups and known dietary constraints specified by human experts. Motivated by this challenge, we develop a preference-aware constrained-inference approach in which the objective function of an optimization problem is not pre-specified and can differ across various segments. Among existing methods, clustering models from machine learning are not naturally suited for recovering the constrained optimization problems, whereas constrained inference models such as inverse optimization do not explicitly address non-homogeneity in given datasets. By harnessing the strengths of both clustering and inverse optimization techniques, we develop a novel approach that recovers the utility functions of a constrained optimization process across clusters while providing optimal diet recommendations as cluster representatives. Using a dataset of patients' daily food intakes, we show how our approach generalizes stand-alone clustering and inverse optimization approaches in terms of adherence to dietary guidelines and partitioning observations, respectively. The approach makes diet recommendations by incorporating both patient preferences and expert recommendations for healthier diets, leading to structural improvements in both patient partitioning and nutritional recommendations for each cluster. An appealing feature of our method is its ability to consider infeasible but informative observations for a given set of dietary constraints. The resulting recommendations correspond to a broader range of dietary options, even when they limit unhealthy choices

    Similar works

    Full text

    thumbnail-image

    Available Versions