Quantifying uncertainties due to optical potentials in one-neutron knockout reactions

Abstract

One-neutron knockout reactions have been widely used to extract information about the single-particle structure of nuclei from the valley of stability to the driplines. The interpretation of knockout data relies on reaction models, where the uncertainties are typically not accounted for. In this work we quantify uncertainties of optical potentials used in these reaction models and propagate them, for the first time, to knockout observables using a Bayesian analysis. We study two reactions in the present paper, the first of which involves a loosely-bound halo projectile, 11^{11}Be, and the second a tightly-bound projectile, 12^{12}C. We first quantify the parametric uncertainties associated with phenomenological optical potentials. Complementing to this approach, we also quantify the model uncertainties associated with the chiral forces that can be used to construct microscopic optical potentials. For the phenomenological study, we investigate the impact of the imaginary terms of the optical potential on the breakup and stripping components of the knockout cross sections as well as the impact of the angular range. For the 11^{11}Be case, the theoretical uncertainty from the phenomenological method is on the order of the experiment uncertainty on the knockout observables; however, for the 12^{12}C case, the theoretical uncertainty is significantly larger. The widths of the confidence intervals for the knockout observables obtained for the microscopic study and the phenomenological approach are of similar order of magnitude. Based on this work we conclude that structure information inferred from the ratio of the knockout cross sections, will carry a theoretical uncertainty of at least 20%20\% for halo nuclei and at least 40%40\% for tightly-bound nuclei.Comment: 12 pages (including 2 of supplemental material and 1 of reference), 5 figures, 2 table

    Similar works

    Full text

    thumbnail-image

    Available Versions