A hybrid framework combining the branch and bound method with multiobjective
evolutionary algorithms is proposed for nonconvex multiobjective optimization.
The hybridization exploits the complementary character of the two optimization
strategies. A multiobjective evolutionary algorithm is intended for inducing
tight lower and upper bounds during the branch and bound procedure. Tight
bounds such as the ones derived in this way can reduce the number of
subproblems that have to be solved. The branch and bound method guarantees the
global convergence of the framework and improves the search capability of the
multiobjective evolutionary algorithm. An implementation of the hybrid
framework considering NSGA-II and MOEA/D-DE as multiobjective evolutionary
algorithms is presented. Numerical experiments verify the hybrid algorithms
benefit from synergy of the branch and bound method and multiobjective
evolutionary algorithms