Quantum State Tomography Inspired by Language Modeling

Abstract

Quantum state tomography is an elementary tool to fully characterize an unknown quantum state. As the quantum hardware scales up in size, the standard quantum state tomography becomes increasingly challenging due to its exponentially growing complexity. In this work, we propose a scalable solution by considering state tomography as a language modeling task, where the unknown quantum state is treated as an unknown language, the correlation of the quantum state is interpreted as the semantic information specific to this language, and the measurement outcomes are simply the text instances generated from the language. Based on a customized transformer model from language modeling, we demonstrate that our method can accurately reconstruct prototypical pure and mixed quantum states using less samples than state-of-the-art methods. More importantly, our method can reconstruct a class of similar states simultaneously, in comparison with the existing neural network methods that need to train a model for each unknown state

    Similar works

    Full text

    thumbnail-image

    Available Versions