Abstract

Submitted to ApJWe present kinematics of 6 local extremely metal-poor galaxies (EMPGs) with low metallicities (0.0160.098 Z0.016-0.098\ Z_{\odot}) and low stellar masses (104.7107.6M10^{4.7}-10^{7.6} M_{\odot}). Taking deep medium-high resolution (R7500R\sim7500) integral-field spectra with 8.2-m Subaru, we resolve the small inner velocity gradients and dispersions of the EMPGs with Hα\alpha emission. Carefully masking out sub-structures originated by inflow and/or outflow, we fit 3-dimensional disk models to the observed Hα\alpha flux, velocity, and velocity-dispersion maps. All the EMPGs show rotational velocities (vrotv_{\rm rot}) of 5--23 km s1^{-1} smaller than the velocity dispersions (σ0\sigma_{0}) of 17--31 km s1^{-1}, indicating dispersion-dominated (vrot/σ0=0.290.80<1v_{\rm rot}/\sigma_{0}=0.29-0.80<1) systems affected by inflow and/or outflow. Except for two EMPGs with large uncertainties, we find that the EMPGs have very large gas-mass fractions of fgas0.91.0f_{\rm gas}\simeq 0.9-1.0. Comparing our results with other Hα\alpha kinematics studies, we find that vrot/σ0v_{\rm rot}/\sigma_{0} decreases and fgasf_{\rm gas} increases with decreasing metallicity, decreasing stellar mass, and increasing specific star-formation rate. We also find that simulated high-zz (z7z\sim 7) forming galaxies have gas fractions and dynamics similar to the observed EMPGs. Our EMPG observations and the simulations suggest that primordial galaxies are gas-rich dispersion-dominated systems, which would be identified by the forthcoming James Webb Space Telescope (JWST) observations at z7z\sim 7

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2022