Effect of casting technology on microstructure and phases of high carbon high speed steel

Abstract

The as-cast microstructures of high carbon high speed steels (HC-HSS) made by sand casting, centrifugal casting and electromagnetic centrifugal casting, respectively, were studied by using of optical microscopy (OM) and D/max2200pc X-ray diffraction. The results show that the microstructure of as-cast HC-HSS is dominated by alloy carbides (W2C, VC, Cr7C3), martensite and austenite. The centrifugal casting and electromagnetic centrifugal casting apparently improve the solidification structure of HC-HSS. With the increase of magnetic intensity (B), the volume fraction of austenite in the HC-HSS solidification structure increases significantly while the eutectic ledeburite decreases. Moreover, the secondary carbides precipitated from the austenite are finer with more homogeneous distribution in the electromagnetic centrifugal castings. It has also been found that the lath of eutectic carbide in ledeburite becomes finer and carbide phase spacing in eutectic ledeburite increases along with the higher magnetic field strength

    Similar works

    Full text

    thumbnail-image