A Turbulent Fluid Mechanics via Nonlinear Mixing of Smooth Flows with Bargmann-Fock Random Fields: Stochastically Averaged Navier-Stokes Equations and Velocity Correlations

Abstract

Let I ⁣HβŠ‚R3\mathbb{I\!H}\subset\mathbb{R}^{3}, with Vol(I ⁣H)∼L3{Vol}(\mathbb{I\!H})\sim L^{3}, contain a fluid of viscosity Ξ½\nu and velocity Ui(x,t)\mathrm{U}_{i}(x,t) with (x,t)∈I ⁣HΓ—[0,∞)(x,t)\in\mathbb{I\!H}\times[0,\infty), satisfying the Navier-Stokes equations with some boundary conditions on βˆ‚I ⁣H\partial\mathbb{I\!H} and evolving from initial Cauchy data. Now let B(x)\mathscr{B}(x) be a Gaussian random field defined for all x∈I ⁣Hx\in\mathbb{I\!H} with expectation E⟨B(x)⟩=0\mathsf{E}\langle\mathscr{B}(x)\rangle=0, and a Bargmann-Fock binary correlation E⟨B(x)βŠ—B(y)⟩=Cexp⁑(βˆ’βˆ₯xβˆ’yβˆ₯2Ξ»βˆ’2)\mathsf{E}\big\langle\mathscr{B}(x)\otimes \mathscr{B}({y})\big\rangle=\mathsf{C}\exp(-\|{x}-{y}\|^{2}\lambda^{-2}) with λ≀L\lambda\le {L}. Define a volume-averaged Reynolds number Re(I ⁣H,t)=(∣Vol(I ⁣H)βˆ£βˆ’1∫I ⁣Hβˆ₯Ui(x,t)βˆ₯dΞΌ(x)L/Ξ½\mathbf{Re}(\mathbb{I\!H},t) =(|Vol(\mathbb{I\!H})|^{-1}\int_{\mathbb{I\!H}}\|\mathrm{U}_{i}(x,t)\|d\mu({x}){L}/\nu. The critical Reynolds number is Rec(I ⁣H)\mathbf{Re}_{c}(\mathbb{I\!H}) so that turbulence evolves within I ⁣H\mathbb{I\!H} for tt such that Re(I ⁣H,t)>Rec(I ⁣H)\mathbf{Re}(\mathbb{I\!H},t)>\mathbf{Re}_{c}(\mathbb{I\!H}). Let ψ(∣Re(I ⁣H,t)βˆ’Rec(I ⁣H)∣)\psi(|\mathbf{Re}(\mathbb{I\!H},t)-\mathbf{Re}_{c}(\mathbb{I\!H})|) be an arbitrary monotone-increasing functional. The turbulent flow evolving within I ⁣H\mathbb{I\!H} is described by the random field Ui(x,t)\mathscr{U}_{i}(x,t) via a 'mixing' ansatz Ui(x,t)=Ui(x,t)+Ξ²Ui(x,t){ψ(∣Re(I ⁣H,t)βˆ’Rec(I ⁣H)∣)}SC[Re(I ⁣H,t)]B(x)\mathscr{U}_{i}(x,t)=\mathrm{U}_{i}(x,t)+\beta\mathrm{U}_{i}(x,t) \big\lbrace\psi(|\mathbf{Re}(\mathbb{I\!H},t)-\mathbf{Re}_{c}(\mathbb{I\!H})|)\big\rbrace \mathbb{S}_{\mathfrak{C}}[\mathbf{Re}(\mathbb{I\!H},t)\big]\mathscr{B}(x) where Ξ²β‰₯1{\beta}\ge 1 is a constant and SC[Re(I ⁣H,t)]\mathbb{S}_{\mathfrak{C}}[\mathbf{Re}(\mathbb{I\!H},t)] an indicator function. The flow grows increasingly random if Re(I ⁣H,t)\mathbf{Re}(\mathbb{I\!H},t) increases with tt so that this is a 'control parameter'. The turbulent flow Ui(x,t)\mathscr{U}_{i}(x,t) is a solution of stochastically averaged N-S equations. Reynolds-type velocity correlations are estimated.Comment: 64 pages, 5 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions