CORE
πΊπ¦Β
Β make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
A Turbulent Fluid Mechanics via Nonlinear Mixing of Smooth Flows with Bargmann-Fock Random Fields: Stochastically Averaged Navier-Stokes Equations and Velocity Correlations
Authors
Steven D Miller
Publication date
27 November 2022
Publisher
View
on
arXiv
Abstract
Let
I
ββ£
H
β
R
3
\mathbb{I\!H}\subset\mathbb{R}^{3}
I
H
β
R
3
, with
V
o
l
(
I
ββ£
H
)
βΌ
L
3
{Vol}(\mathbb{I\!H})\sim L^{3}
V
o
l
(
I
H
)
βΌ
L
3
, contain a fluid of viscosity
Ξ½
\nu
Ξ½
and velocity
U
i
(
x
,
t
)
\mathrm{U}_{i}(x,t)
U
i
β
(
x
,
t
)
with
(
x
,
t
)
β
I
ββ£
H
Γ
[
0
,
β
)
(x,t)\in\mathbb{I\!H}\times[0,\infty)
(
x
,
t
)
β
I
H
Γ
[
0
,
β
)
, satisfying the Navier-Stokes equations with some boundary conditions on
β
I
ββ£
H
\partial\mathbb{I\!H}
β
I
H
and evolving from initial Cauchy data. Now let
B
(
x
)
\mathscr{B}(x)
B
(
x
)
be a Gaussian random field defined for all
x
β
I
ββ£
H
x\in\mathbb{I\!H}
x
β
I
H
with expectation
E
β¨
B
(
x
)
β©
=
0
\mathsf{E}\langle\mathscr{B}(x)\rangle=0
E
β¨
B
(
x
)β©
=
0
, and a Bargmann-Fock binary correlation
E
β¨
B
(
x
)
β
B
(
y
)
β©
=
C
exp
β‘
(
β
β₯
x
β
y
β₯
2
Ξ»
β
2
)
\mathsf{E}\big\langle\mathscr{B}(x)\otimes \mathscr{B}({y})\big\rangle=\mathsf{C}\exp(-\|{x}-{y}\|^{2}\lambda^{-2})
E
β¨
B
(
x
)
β
B
(
y
)
β©
=
C
exp
(
β
β₯
x
β
y
β₯
2
Ξ»
β
2
)
with
Ξ»
β€
L
\lambda\le {L}
Ξ»
β€
L
. Define a volume-averaged Reynolds number
R
e
(
I
ββ£
H
,
t
)
=
(
β£
V
o
l
(
I
ββ£
H
)
β£
β
1
β«
I
ββ£
H
β₯
U
i
(
x
,
t
)
β₯
d
ΞΌ
(
x
)
L
/
Ξ½
\mathbf{Re}(\mathbb{I\!H},t) =(|Vol(\mathbb{I\!H})|^{-1}\int_{\mathbb{I\!H}}\|\mathrm{U}_{i}(x,t)\|d\mu({x}){L}/\nu
Re
(
I
H
,
t
)
=
(
β£
V
o
l
(
I
H
)
β£
β
1
β«
I
H
β
β₯
U
i
β
(
x
,
t
)
β₯
d
ΞΌ
(
x
)
L
/
Ξ½
. The critical Reynolds number is
R
e
c
(
I
ββ£
H
)
\mathbf{Re}_{c}(\mathbb{I\!H})
Re
c
β
(
I
H
)
so that turbulence evolves within
I
ββ£
H
\mathbb{I\!H}
I
H
for
t
t
t
such that
R
e
(
I
ββ£
H
,
t
)
>
R
e
c
(
I
ββ£
H
)
\mathbf{Re}(\mathbb{I\!H},t)>\mathbf{Re}_{c}(\mathbb{I\!H})
Re
(
I
H
,
t
)
>
Re
c
β
(
I
H
)
. Let
Ο
(
β£
R
e
(
I
ββ£
H
,
t
)
β
R
e
c
(
I
ββ£
H
)
β£
)
\psi(|\mathbf{Re}(\mathbb{I\!H},t)-\mathbf{Re}_{c}(\mathbb{I\!H})|)
Ο
(
β£
Re
(
I
H
,
t
)
β
Re
c
β
(
I
H
)
β£
)
be an arbitrary monotone-increasing functional. The turbulent flow evolving within
I
ββ£
H
\mathbb{I\!H}
I
H
is described by the random field
U
i
(
x
,
t
)
\mathscr{U}_{i}(x,t)
U
i
β
(
x
,
t
)
via a 'mixing' ansatz
U
i
(
x
,
t
)
=
U
i
(
x
,
t
)
+
Ξ²
U
i
(
x
,
t
)
{
Ο
(
β£
R
e
(
I
ββ£
H
,
t
)
β
R
e
c
(
I
ββ£
H
)
β£
)
}
S
C
[
R
e
(
I
ββ£
H
,
t
)
]
B
(
x
)
\mathscr{U}_{i}(x,t)=\mathrm{U}_{i}(x,t)+\beta\mathrm{U}_{i}(x,t) \big\lbrace\psi(|\mathbf{Re}(\mathbb{I\!H},t)-\mathbf{Re}_{c}(\mathbb{I\!H})|)\big\rbrace \mathbb{S}_{\mathfrak{C}}[\mathbf{Re}(\mathbb{I\!H},t)\big]\mathscr{B}(x)
U
i
β
(
x
,
t
)
=
U
i
β
(
x
,
t
)
+
Ξ²
U
i
β
(
x
,
t
)
{
Ο
(
β£
Re
(
I
H
,
t
)
β
Re
c
β
(
I
H
)
β£
)
}
S
C
β
[
Re
(
I
H
,
t
)
]
B
(
x
)
where
Ξ²
β₯
1
{\beta}\ge 1
Ξ²
β₯
1
is a constant and
S
C
[
R
e
(
I
ββ£
H
,
t
)
]
\mathbb{S}_{\mathfrak{C}}[\mathbf{Re}(\mathbb{I\!H},t)]
S
C
β
[
Re
(
I
H
,
t
)]
an indicator function. The flow grows increasingly random if
R
e
(
I
ββ£
H
,
t
)
\mathbf{Re}(\mathbb{I\!H},t)
Re
(
I
H
,
t
)
increases with
t
t
t
so that this is a 'control parameter'. The turbulent flow
U
i
(
x
,
t
)
\mathscr{U}_{i}(x,t)
U
i
β
(
x
,
t
)
is a solution of stochastically averaged N-S equations. Reynolds-type velocity correlations are estimated.Comment: 64 pages, 5 figure
Similar works
Full text
Available Versions
arXiv.org e-Print Archive
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:arXiv.org:2211.14925
Last time updated on 30/12/2022