SIMS and TEM Analysis of Niobium Bicrystals

Abstract

The behaviour of interstitial impurities(C,O,N,H) on the Nb surface with respect to grain boundaries may affect cavity performance. Large grain Nb makes possible the selection of bicrystal samples with a well defined grain boundary. In this work, Dynamic SIMS was used to analyze two Nb bicrystal samples, one of them heat treated and the other non heat treated (control). H levels were found to be higher for the non heat treated sample and a difference in the H intensity and sputtering rate was also observed across the grain boundary for both the samples. TEM results showed that the bicrystal interface showed no discontinuity and the oxide layer was uniform across the grain boundary for both the samples. TOF-SIMS imaging was also performed to analyze the distribution of the impurities across the grain boundary in both the samples. C was observed to be segregated along the grain boundary for the control sample, while H and O showed a difference in signal intensity across the grain boundary. Crystal orientation appears to have an important role in the observed sputtering rate and impurity ion signal differences both across the grain boundary and between sample

    Similar works