United States. Department of Energy. Office of Science.
Abstract
Describing and understanding atomic nuclei is a puzzle that has intrigued scientists for decades. Approximately ten years ago, a description of nucleon structure, referred to as Generalized Parton Distribution (GPD), was introduced. GPDs are a way of describing scattering and production processes in a single framework. Deeply Virtual Compton Scattering (DVCS) is a process that scatters a photon from a proton and detects a scattered electron, a proton, and one photon in the fi nal state. From DVCS, GPDs can be extracted in order to lead us to a more complete picture of nucleon structure. The focus of this study is to understand the beam spin asymmetry (BSA) of the neutral π° meson, a main source of background during the DVCS process. To calculate the BSA, the number of π° events with positive helicity (spin) and negative helicity were counted by integrating histograms with Gaussians fi ts. It is shown that there is a signifi cant non-zero BSA in production of exclusive π°, namely 0.0655±0.0022. In the analysis of previous experiments, the BSA of π° was assumed to be zero and therefore ignored. Now, future analyses of DVCS data may incorporate this evidence of BSA. A deeper understanding of background processes (π°) in the DVCS will allow precision measurements of GPDs, providing new insight concerning the structure of nucleons