Development of a three-phase reacting flow computer model for analysis of petroleum cracking

Abstract

A general computational fluid dynamics computer code (ICRKFLO) has been developed for the simulation of the multi-phase reacting flow in a petroleum fluid catalytic cracker riser. ICRKFLO has several unique features. A new integral reaction submodel couples calculations of hydrodynamics and cracking kinetics by making the calculations more efficient in achieving stable convergence while still preserving the major physical effects of reaction processes. A new coke transport submodel handles the process of coke formation in gas phase reactions and the subsequent deposition on the surface of adjacent particles. The code was validated by comparing with experimental results of a pilot scale fluid cracker unit. The code can predict the flow characteristics of gas, liquid, and particulate solid phases, vaporization of the oil droplets, and subsequent cracking of the oil in a riser reactor, which may lead to a better understanding of the internal processes of the riser and the impact of riser geometry and operating parameters on the riser performance

    Similar works

    Full text

    thumbnail-image