Dependence of intake fraction on release location in a multi-media framework: A case study of four contaminants in North America

Abstract

The extent of human exposure to persistent anthropogenic environmental contaminants is a complex function of the amount of chemical emitted, its physico-chemical properties and reactivity, the nature of the environment, and the characteristics of the pathways for human exposure, such as inhalation, intake of food and water and dermal contact. For some chemicals, the location of emissions relative to areas of high population density or intense food production may also be an important factor. The relative importance of these variables is explored using the regionally segmented BETR North America contaminant fate model and data for food production patterns and population density for North America. The model is applied to four contaminants emitted to air: benzene, carbon tetrachloride, benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo dioxin. The total continental intake fraction (iF), relating exposure quantity to emission quantity, is employed as a metric for assessing population exposure to environmental contaminants. The results show that the use of continentally averaged parameters for population density and food production provides an accurate estimate of the median of iF calculated for emissions in individual regions, however iF can range from this median by up to 3 orders of magnitude, especially for chemicals transferred to humans through the food pathway. The location of population relative to food production and emissions of chemicals are important variables that should be considered in assessing the public health implications of chemical emissions

    Similar works