Correlating Observations of Deformation Microstructures by TEM and Automated EBSD Techniques

Abstract

The evolution of the deformed microstructure as a function of imposed plastic strain is of interest as it provides information on the material hardening characteristics and mechanism(s) by which cold work energy is stored. This has been extensively studied using transmission electron microscopy (TEM), where the high spatial and orientational resolution of the technique is used to advantage to study local phenomenon such as dislocation core structures and interactions of dislocations. With the recent emergence of scanning electron microscope (SEM) based automated electron backscatter diffraction (EBSD) techniques, it has now become possible to make mesoscale observations that are statistical in nature and complement the detailed TEM observations. Correlations of such observations will be demonstrated for the case of Ni-base alloys, which are typically non-cell forming solid solution alloys when deformed at ambient temperatures. For instance, planar slip is dominant at low strain levels but evolves into a microstructure where distinct crystallographic dislocation-rich walls form as a function of strain and grain orientation. Observations recorded using both TEM and EBSD techniques are presented and analyzed for their implication on subsequent annealing characteristics

    Similar works