Tuning a double quantum well Fermi surface with in-plane magnetic fields

Abstract

A double quantum well (QW) subject to in-plane magnetic fields B{sub {parallel}} has the dispersion curves of its two QWs shifted in k-space. When the QWs are strongly coupled, an anticrossing and partial energy gap occur, yielding a tunable multi-component Fermi surface. We report measurements of the resultant features in the conductance, capacitive density of states, and giant deviations in cyclotron effective masses

    Similar works