In situ study of fiber structure development of poly(butylene terephthalate) in a continuous laser-heated drawing process

Abstract

The structural development of poly(butylene terephthalate) (PBT) fibers was analyzed using in situ wide angle X-ray diffraction and fiber temperature measurements during CO2 laser-heated drawing, in which the necking position on the running fiber could be fixed by CO2 laser irradiation. The measured parameters were determined as functions of the elapsed time after necking with a time resolution of 0.3 ms. The as-spun PBT fibers, which exhibited a low-oriented alpha-crystalline structure, were drawn to a draw ratio of 5 using laser heating. The (001') reflection, which indicates a quasi-smectic fibrillar structure, was not observed before crystallization in contrast to measurements of poly(ethylene terephthalate) (PET) and poly(ethylene 2,6-naphthalene dicarboxylate) (PEN). The alpha-crystal was transformed into an oriented beta-form crystal at the necking position, and the developed beta-crystallites exhibited increased size and altered orientation <2 ms after necking. The fiber temperature increased rapidly at around T-g, and the rearrangement of the beta-crystal primarily occurred as the fiber's temperature rose from 100 to 160 degrees C. The oriented beta-crystal of the drawn fiber transformed into the oriented beta-crystal when the drawing tension was released. Polymer Journal (2012) 44, 1030-1035; doi: 10.1038/pj.2012.65; published online 18 April 2012ArticlePOLYMER JOURNAL. 44(10):1030-1035 (2012)journal articl

    Similar works