Kinetics of gas-phase reactions relevant to the chemical vapor deposition of indium compounds

Abstract

Compounds containing indium are of interest for electronic and optical applications. These compounds include III-V semiconductors such as InP and InAs used in both electronic devices and solar cells, and indium tin oxide, which can be used for optical memory and antireflection coatings. Chemical vapor deposition (CVD) techniques can be used to deposit these materials on a variety of substrates. At the temperatures typically employed (550--900 K), gas-phase chemical reactions involving the indium-containing precursor can occur. The kinetics of trimethylindium pyrolysis are investigated in a flow reactor equipped with a molecular-beam mass-spectrometric sampling system. Data are analyzed using a new computational approach that accounts for heat and mass transport in the reactor. The measured activation energy, 46.2 kcal/mol, is in good agreement with previously reported values

    Similar works