IC3D: Image-Conditioned 3D Diffusion for Shape Generation

Abstract

In the last years, Denoising Diffusion Probabilistic Models (DDPMs) obtained state-of-the-art results in many generative tasks, outperforming GANs and other classes of generative models. In particular, they reached impressive results in various image generation sub-tasks, among which conditional generation tasks such as text-guided image synthesis. Given the success of DDPMs in 2D generation, they have more recently been applied to 3D shape generation, outperforming previous approaches and reaching state-of-the-art results. However, 3D data pose additional challenges, such as the choice of the 3D representation, which impacts design choices and model efficiency. While reaching state-of-the-art results in generation quality, existing 3D DDPM works make little or no use of guidance, mainly being unconditional or class-conditional. In this paper, we present IC3D, the first Image-Conditioned 3D Diffusion model that generates 3D shapes by image guidance. It is also the first 3D DDPM model that adopts voxels as a 3D representation. To guide our DDPM, we present and leverage CISP (Contrastive Image-Shape Pre-training), a model jointly embedding images and shapes by contrastive pre-training, inspired by text-to-image DDPM works. Our generative diffusion model outperforms the state-of-the-art in 3D generation quality and diversity. Furthermore, we show that our generated shapes are preferred by human evaluators to a SoTA single-view 3D reconstruction model in terms of quality and coherence to the query image by running a side-by-side human evaluation

    Similar works

    Full text

    thumbnail-image

    Available Versions