Correlative Preference Transfer with Hierarchical Hypergraph Network for Multi-Domain Recommendation

Abstract

Advanced recommender systems usually involve multiple domains (scenarios or categories) for various marketing strategies, and users interact with them to satisfy their diverse demands. The goal of multi-domain recommendation is to improve the recommendation performance of all domains simultaneously. Conventional graph neural network based methods usually deal with each domain separately, or train a shared model for serving all domains. The former fails to leverage users' cross-domain behaviors, making the behavior sparseness issue a great obstacle. The latter learns shared user representation with respect to all domains, which neglects users' domain-specific preferences. These shortcomings greatly limit their performance in multi-domain recommendation. To tackle the limitations, an appropriate way is to learn from multi-domain user feedbacks and obtain separate user representations to characterize their domain-specific preferences. In this paper we propose H3Trans\mathsf{H^3Trans}, a hierarchical hypergraph network based correlative preference transfer framework for multi-domain recommendation. H3Trans\mathsf{H^3Trans} represents multi-domain feedbacks into a unified graph to help preference transfer via taking full advantage of users' multi-domain behaviors. We incorporate two hyperedge-based modules, namely dynamic item transfer module (Hyper-I) and adaptive user aggregation module (Hyper-U). Hyper-I extracts correlative information from multi-domain user-item feedbacks for eliminating domain discrepancy of item representations. Hyper-U aggregates users' scattered preferences in multiple domains and further exploits the high-order (not only pair-wise) connections among them to learn user representations. Experimental results on both public datasets and large-scale production datasets verify the superiority of H3Trans\mathsf{H^3Trans} for multi-domain recommendation.Comment: Work in progres

    Similar works

    Full text

    thumbnail-image

    Available Versions