Probabilistic bounds on the kk-Traveling Salesman Problem and the Traveling Repairman Problem

Abstract

The kk-traveling salesman problem (kk-TSP) seeks a tour of minimal length that visits a subset of knk\leq n points. The traveling repairman problem (TRP) seeks a complete tour with minimal latency. This paper provides constant-factor probabilistic approximations of both problems. We first show that the optimal length of the kk-TSP path grows at a rate of Θ(k/n12(1+1k1))\Theta\left(k/n^{\frac{1}{2}\left(1+\frac{1}{k-1}\right)}\right). The proof provides a constant-factor approximation scheme, which solves a TSP in a high-concentration zone -- leveraging large deviations of local concentrations. Then, we show that the optimal TRP latency grows at a rate of Θ(nn)\Theta(n\sqrt n). This result extends the classical Beardwood-Halton-Hammersley theorem to the TRP. Again, the proof provides a constant-factor approximation scheme, which visits zones by decreasing order of probability density. We discuss practical implications of this result in the design of transportation and logistics systems. Finally, we propose dedicated notions of fairness -- randomized population-based fairness for the kk-TSP and geographical fairness for the TRP -- and give algorithms to balance efficiency and fairness

    Similar works

    Full text

    thumbnail-image

    Available Versions